
Beam to Girder End Plate Shear Connection		Code=AISC 360-10 LRFD
Result Summary	geometries & weld limitations = PASS	limit states max ratio = 0.90 PASS
Sketch	Shear Connection	Code=AISC 360-10 LRFD

Members & Components Summary					
Member	Shear Connection				Code=AISC 360-10 LRFD
End Plate					
Plate	W = 6.750	[in]	L = 8.750	[in]	
	t = 0.375	[in]			
Steel Grade A992	$F_y = 50.0$	[ksi]	$F_u = 65.0$	[ksi]	
Bolt end plate	bolt				
Bolt	dia = 0.750	[in]			
	grade = A325-N		$F_u = 120.0$	[ksi]	
	$F_{nt} = 90.0$	[ksi]	$F_{nv} = 54.0$	[ksi]	
slip critical	SC = No				

Geometry Restriction Check - End Plate to Girder				PASS		
Min Bolt Edge Distance - End Plate	e to Girder					
Bolt diameter	d _b =	= 0.750	[in]			
Min edge distance allowed	L _{e-min} =	= 1.000	[in]	AISC 14 th Table J3.4		
Min edge distance in End Plate to Girder	L _e =	= 1.375	[in]			
		> L _{e-min}	OK			
Min Bolt Spacing - End Plate to Gir	der					
Bolt diameter	d _b =	= 0.750	[in]			
Min bolt spacing allowed	$L_{s-min} = 2.667 d_b$	= 2.000	[in]	AISC 14 th J3.3		
Min Bolt spacing in End Plate to Girder	L _s =	= 3.000	[in]			
		> L _{s-min}	OK			
Weld Limitation Check - Beam V	Veb to End Plate			PASS		
Min Fillet Weld Size						
Thinner part joined thickness	 t =	= 0.260	[in]			
Min fillet weld size allowed	w _{min} =	= 0.188	[in]	AISC 14 th Table J2.4		
Fillet weld size provided	w =	= 0.313	[in]			
		> w _{min}	OK			
Min Fillet Weld Length						
Fillet weld size provided	w =	= 0.313	[in]			
Min fillet weld length allowed	$L_{min} = 4 \times w$	= 1.250	[in]	AISC 14 th J2.2b		
Min fillet weld length	L =	= 8.750	[in]			

Beam Web - Shear Yielding		ratio = 50.00 / 74.49	= 0.67	PASS
Plate Shear Yielding Check				
Plate size	width $b_p = 9.550$ [in]	thickness $t_p = 0.260$	[in]	
Plate yield strength	$F_y = 50.0$ [ksi]			
Plate gross area in shear	$A_{gv} = b_p t_p$	= 2.483	[in ²]	
Shear force required	V _u =	= 50.00	[kips]	
Plate shear yielding strength	$R_n = 0.6 F_y A_{gv}$	= 74.49	[kips]	AISC 14 th Eq J4-3
Resistance factor-LRFD	$\phi = 1.00$			AISC 14 th Eq J4-3
	$\phi R_n =$	= 74.49	[kips]	
	ratio = 0.67	> V _u	ОК	

 $> L_{min}$

OK

Beam Web - Shear Rupture		ratio = 50.00 / 72.63	= 0.69	PASS
Plate Shear Rupture Check				
Plate size	width $b_p = 9.550$ [in]	thickness $t_p = 0.260$	[in]	
Plate tensile strength	$F_u = 65.0$ [ksi]			
Plate net area in shear	$A_{nv} = b_p t_p$	= 2.483	[in ²]	
Shear force in demand	$V_u =$	= 50.00	[kips]	
Plate shear rupture strength	$R_n = 0.6 F_u A_{nv}$	= 96.84	[kips]	AISC 14 th Eq J4-4
Resistance factor-LRFD	φ = 0.75			AISC 14 th Eq J4-4
	$\phi R_n =$	= 72.63	[kips]	
	ratio = 0.69	> V _u	OK	

Beam Web - Tensile Yielding			ratio = 25.00 / 102.3	8 = 0.24	PASS	
End Plate Direct Connect Length Calc						
Beam web-end plate connect length	L =		= 8.750	[in]		
Beam web thickness	t _w =		= 0.260	[in]		
Gross area subject to tension	$A_g = Lt_w$		= 2.275	[in ²]		
Gross area subject to tension	$A_g =$		= 2.275	[in ²]		
Steel yield strength	$F_y =$		= 50.0	[ksi]		
Tensile force required	$P_u =$		= 25.00	(kips		
Tensile yielding strength	$R_n = F_y A_g$		= 113.7	5 [kips]	AISC 14 th Eq D2-1	
Resistance factor-LRFD	$\phi = 0.90$				AISC 14 th D2 (a)	
	$\phi R_n =$		= 102.3	88 [kips]	AISC 14 th Eq D2-1	
	ratio = 0.24		> P _u	OK		
Beam Web - Tensile Rupture			ratio = 25.00 / 102.9	8 = 0.24	PASS	
End Plate Direct Connect Length Calc						
Beam web-end plate weld length	L =		= 8.750	[in]		
Beam web-end plate fillet weld size	w =		= 0.313	[in]		
Beam web-end plate connect length	$L_w = L - 2 w$		= 8.125	[in]		
Plate Tensile Rupture Check	_					
Plate size	width $b_p = 8.125$	[in]	thickness $t_p = 0.260$	[in]		
Plate tensile strength	$F_u = 65.0$	[ksi]				
Plate net area in tension	$A_{nt} = b_p t_p$		= 2.113	[in ²]		
Tensile force in demand	$P_u =$		= 25.00	(kips		
Plate tensile rupture strength	$R_n = F_u A_{nt}$		= 137.3	1 [kips]	AISC 14 th Eq J4-2	
Resistance factor-LRFD	$\phi = 0.75$				AISC 14 th Eq J4-2	
	$\phi R_n =$		= 102.9	98 [kips]	AISC 14 th Eq J4-2	
	ratio = 0.24		> P _u	OK		

Coped Beam - Flexural Rupture			ratio = 50.00 / 240.69	= 0.21	PASS
Beam section & cope side	sect = W12X30)	cope side = double d	cope	
Beam top flange cope	depth $d_c = 1.250$	[in]	length $L_c = 3.983$	[in]	
Beam bottom flange cope	depth $d_c = 1.500$	[in]	length $L_c = 3.983$	[in]	
S _{net} of Coped Beam With Hor Reinforci	ng Stiffener Plates				
Beam sect W12X30	d = 12.300	[in]	$b_f = 6.520$	[in]	
	$t_f = 0.440$	[in]	$t_{w} = 0.260$	[in]	
Stiffener plate size	$w_p = 3.000$	[in]	$t_p = 0.375$	[in]	
Flange cope depth-top & bot flange	$d_{ct} = 1.250$	[in]	$d_{cb} = 1.500$	[in]	
Properties of Coped W Sect With Hor R	einforcing Stiffener P	Plates			
Top flange	$b_{ft} = 6.260$	[in]	$t_{ft} = 0.375$	[in]	
Bottom flange	$b_{fb} = 6.260$	[in]	$t_{fb} = 0.375$	[in]	
W sect depth	d = 8.800	[in]	web $t_{w} = 0.260$	[in]	
Dist from sect centroid to T&B flange face	$x_t = 4.400$	[in]	$x_b = 4.400$	[in]	
Max dist sect centroid to T&B flange face	$x_{max} = max (x)$	(x_t, x_b)	= 4.400	[in]	
W sect moment of inertia	$I_x =$		= 94.7	[in ⁴]	
W sect elastic modulus	$S_{net} = I_x / x_{ma}$	x	= 21.52	[in ³]	
Beam section tensile strength	$F_u =$		= 65.0	[ksi]	
Distance from face of cope to the point of inflection of beam	e =		= 4.358	[in]	AISC 14 th Page 9-6
Beam end shear force	$V_u =$		= 50.00	[kips]	
Beam end shear resistance	$R_n = F_u S_{net}$	' e	= 320.92	[kips]	AISC 14 th Eq 9-4
Resistance factor-LRFD	$\phi = 0.75$				AISC 14 th Eq 9-4
	$\phi R_n =$		= 240.69	[kips]	
	ratio = 0.21		$> V_u$	OK	

Coped Beam - Local Web Buckli	ng		ratio = 50.00 / 222.17	= 0.23	PASS
Beam section & cope side	sect = W12X30		cope side = double	cope side = double cope	
Beam top flange cope	depth $d_{ct} = 1.250$	[in]	length $L_{ct} = 3.983$	[in]	
Beam bottom flange cope	depth $d_{cb} = 1.500$	[in]	length $L_{cb} = 3.983$	[in]	
S _{net} of Coped Beam With Hor Reinford	ing Stiffener Plates				
Beam sect W12X30	d = 12.300	[in]	$b_f = 6.520$	[in]	
	$t_f = 0.440$	[in]	$t_{w} = 0.260$	[in]	
Stiffener plate size	$w_p = 3.000$	[in]	$t_p = 0.375$	[in]	
Flange cope depth-top & bot flange	$d_{ct} = 1.250$	[in]	$d_{cb} = 1.500$	[in]	
Properties of Coped W Sect With Hor	Reinforcing Stiffener P	lates			
Top flange	$b_{ft} = 6.260$	[in]	$t_{ft} = 0.375$	[in]	
Bottom flange	$b_{fb} = 6.260$	[in]	$t_{fb} = 0.375$	[in]	
W sect depth	d = 8.800	[in]	web $t_{w} = 0.260$	[in]	
Dist from sect centroid to T&B flange face	$x_t = 4.400$	[in]	$x_b = 4.400$	[in]	
Max dist sect centroid to T&B flange face	$x_{max} = max (x)$	$_{t},x_{b})$	= 4.400	[in]	
W sect moment of inertia	$I_x =$		= 94.7	[in ⁴]	
W sect elastic modulus	$S_{net} = I_x / x_{ma}$	x	= 21.52	[in ³]	
Distance from face of cope to the point of inflection of beam	e =		= 4.358	[in]	AISC 14 th Page 9-6
Beam section	depth $d = 12.300$	[in]	web $t_{w} = 0.260$	[in]	
	$F_y = 50.0$	[ksi]	E = 29000	[ksi]	
	$f_d = 3.5 - 7.$	5 (d _{ct} /d)	= 2.738		AISC 14 th Eq 9-13
Reduced beam depth	$h_0 = d - d_{ct}$	d_{cb}	= 9.550	[in]	
Plate local buckling stress	$F_{cr} = 0.62 \pi E$	$= \frac{t_w^2}{L_{ct}h_0} f_d$	= 274.8	[ksi]	AISC 14 th Eq 9-12
	$F_{cr} = F_{cr} \le$		= 50.0	[ksi]	AISC 14 th Eq 9-12
Beam end shear force			= 50.00	[kips]	
Beam end shear resistance	$R_n = F_{cr} S_{net}$	/ e	= 246.86	[kips]	AISC 14 th Eq 9-6
Resistance factor-LRFD	$\phi = 0.90$				AISC 14 th Eq 9-6
	$\phi R_n =$		= 222.17	[kips]	
	ratio = 0.23		$> V_u$	OK	

Hor Stiffener to Coped Beam Web		PASS		
Min Fillet Weld Size				
Thinner part joined thickness	t =	= 0.260	[in]	
Min fillet weld size allowed	w _{min} =	= 0.188	[in]	AISC 14 th Table J2.4
Fillet weld size provided	w =	= 0.250	[in]	
		> w _{min}	ОК	
Min Fillet Weld Length				
Fillet weld size provided	w =	= 0.250	[in]	
Min fillet weld length allowed	$L_{min} = 4 \times w$	= 1.000	[in]	AISC 14 th J2.2b
Min fillet weld length	L =	= 5.983	[in]	
		> L _{min}	ОК	
Hor Reinforcing Stiffener Extension	Beyond Cope			
To prevent local crippling of the beam w min a distance of d c beyond the cope	eb, the longitudinal stiffening must b	e extended		AISC 14 th Fig 9-10 (b)
Flange cope depth-top & bot flange	d _{ct} = 1.250 [in]	$d_{cb} = 1.500$	[in]	
Max cope depth - top & bot flange	$d_c = max (d_{ct}, d_{cb})$	= 1.500	[in]	
Hor stiffener plate extension beyond cope	L _e =	= 2.000	[in]	
•		> d _c	OK	

Hor Stiffener to Coped Beam Web	Fillet Weld Strength	ratio = 5.22 / 10.97	= 0.48	PASS	
Stiffener to Coped Beam Web Weld	Line Force Calc				
Refer to AISC Design Example v15 Page	IIA-78 for the formula used below	v on how to get the stiffener	weld line fo	orces	
From S_{net} calc in Coped Beam - Local W	eb Buckling check above, the prop	perties of stiffener reinforced	W section		
Reinforced W sect moment of inertia	I _{net} =	= 94.7	[in ⁴]		
Reinforced stiffener plate area	A _p =	= 2.348	[in ²]		
Dist from centroid of reinforced sect to centroid of stiffener plate	y =	= 4.213	[in]		
First moment of reinforced stiffener plate	$Q = A_p y$	= 9.892	[in ³]		
Beam end shear force	$V_u =$	= 50.00	[kips]		
Weld line shear stress	$r_{u1} = \frac{V_u Q}{I_{net}}$	= 5.223	[kip/in]		
Distance from face of cope to the point of inflection of beam	e =	= 4.358	[in]	AISC 14 th Page 9-6	
Beam web hor coped length	L _c =	= 3.983	[in]		
Hor stiffener plate extension beyond the cope	L _e =	= 2.000	[in]		
Stiffener to beam web weld length	$L_w = L_c + L_e$	= 5.983	[in]		
Weld line shear stress	$r_{u2} = \frac{V_u e Q}{I_{net} L_w}$	= 3.804	[kip/in]		
Weld line shear stress - max	$r_u = max (r_{u1}, r_{u2})$	= 5.223	[kip/in]		
Fillet Weld Strength Calc					
Fillet weld leg size	$w = \frac{1}{4}$ [in]	load angle $\theta = 0.0$	[°]		
Electrode strength	$F_{EXX} = 70.0$ [ksi]	strength coeff $C_1 = 1.00$		AISC 14 th Table 8-3	
Number of weld line	n = 2 for double fillet				
Load angle coefficient	$C_2 = (1 + 0.5 \sin^{1.5} \theta)$	= 1.00		AISC 14 th Page 8-9	
Fillet weld shear strength	$R_{n-w} = 0.6 (C_1 \times 70 \text{ ksi}) 0.70$	$7 \text{ w n C}_2 = 14.847$	[kip/in]	AISC 14 th Eq 8-1	
Base metal - stiffener th	ickness t = 0.375 [in]	tensile F _u = 65.0	[ksi]		
Base metal - stiffener is in shear, \underline{shear}	rupture as per AISC 14 th Eq J4-4	is checked		AISC 14 th J2.4	
Base metal shear rupture	$R_{n-b} = 0.6 F_u t$	= 14.625	[kip/in]	AISC 14 th Eq J4-4	
Double fillet linear shear strength	$R_n = \min (R_{n-w}, R_{n-b})$	= 14.625	[kip/in]	AISC 14 th Eq 9-2	
Resistance factor-LRFD	$\phi = 0.75$			AISC 14 th Eq 8-1	
	$\phi R_n =$	= 10.969	[kip/in]		
	ratio = 0.48	> r _u	OK		

End Plate - Shear Yield			ratio = 25.00 / 98.44	= 0.25	PASS
Plate Shear Yielding Check					
Plate size	width $b_p = 8.750$	[in]	thickness $t_p = 0.375$	[in]	
Plate yield strength	$F_{v} = 50.0$	[ksi]	tilickliess t _p = 0.373	נייין	
Plate gross area in shear	,	[KSI]	= 3.281	[in ²]	
Shear force required	$A_{gv} = b_p t_p$ $V_u =$		= 25.00	[kips]	
Plate shear yielding strength	_		= 98.44	[kips]	AISC 14 th Eq J4-3
	$R_n = 0.6 F_y A$	¹ gv	- 50.44	[Kiþ5]	AISC 14 Eq J4-3 AISC 14 th Eq J4-3
Resistance factor-LRFD	φ = 1.00		00.44	[leima]	AISC 14* Eq 14-3
	$\phi R_n =$		= 98.44	[kips]	
	ratio = 0.25		> V _u	OK	
End Plate - Shear Rupture			ratio = 25.00 / 67.18	= 0.37	PASS
Plate Shear Rupture Check					
Bolt hole diameter	bolt dia $d_b = \frac{3}{4}$	[in]	bolt hole dia $d_h = \frac{7}{8}$	[in]	AISC 14 th B4.3b
Number of bolt	n = 3				
Plate size	width $b_{p} = 8.750$	[in]	thickness $t_p = 0.375$	[in]	
Plate tensile strength		[ksi]	·		
Plate net area in shear	$A_{nv} = (b_p - n)$	d _h)t _p	= 2.297	[in ²]	
Shear force required	V _u =	•	= 25.00	[kips]	
Plate shear rupture strength	$R_n = 0.6 F_u A$	nv	= 89.58	[kips]	AISC 14 th Eq J4-4
Resistance factor-LRFD	φ = 0.75				AISC 14 th Eq J4-4
	φ R _n =		= 67.18	[kips]	
	ratio = 0.37		> V _u	OK	
End Plate - Block Shear - Cente	er Strip		ratio = 50.00 / 170.93	= 0.29	PASS
Plate Block Shear - Center Strip					
Bolt hole diameter	bolt dia $d_b = \frac{3}{4}$	[in]	bolt hole dia $d_h = \frac{7}{8}$	[in]	AISC 14 th B4.3b
Plate thickness	$t_p = 0.375$	[in]	8		
Plate strength	$F_{v} = 50.0$	[ksi]	$F_{u} = 65.0$	[ksi]	
Bolt no in ver & hor dir	n _v = 2		n _h = 3		
Bolt spacing in ver & hor dir	$s_{v} = 4.000$	[in]	s _h = 3.000	[in]	
Bolt edge dist in ver & hor dir	e _v = 1.375	[in]	e _h = 1.375	[in]	
	<u> </u>				
Gross area subject to shear	3 ·	$(s_h + e_h) t_p x$		[in ²]	
Net area subject to shear	$A_{nv} = A_{gv} - [(i$	n _h - 1)+ 0.5] d _h	$_{1}t_{p}x2 = 3.891$	[in ²]	
Net area subject to tension					
when sheared out by center strip	$A_{nt} = (n_v - 1)$)(s _v -d _h)t _p	= 1.172	[in ²]	
Block shear strength required	$V_u =$		= 50.00	[kips]	
Uniform tension stress factor	$U_{bs} = 1.00$				AISC 14 th Fig C-J4.2
Bolt shear resistance provided		6F _u A _{nv} , 0.6F _y A	A_{gv}) + = 227.91	[kips]	AISC 14 th Eq J4-5
	U _{bs} F _u A	110			
Resistance factor-LRFD	$\Phi = 0.75$				AISC 14 th Eq J4-5
Resistance factor-LRFD			= 170.93	[kips]	AISC 14 th Eq J4-5

End Plate - Block Shear - 2-Sid	le Strip		ratio = 50.00 / 148.08	= 0.34	PASS
Plate Block Shear - 2 Side Strips					
Bolt hole diameter	bolt dia $d_b = \frac{3}{4}$	[in]	bolt hole dia $d_h = \frac{7}{8}$	[in]	AISC 14 th B4.3b
Plate thickness	$t_p = 0.375$	[in]			
Plate strength	$F_y = 50.0$	[ksi]	$F_{u} = 65.0$	[ksi]	
Bolt no in ver & hor dir	n _v = 2		n _h = 3		
Bolt spacing in ver & hor dir	$s_v = 4.000$	[in]	$s_h = 3.000$	[in]	
Bolt edge dist in ver & hor dir	e _v = 1.375	[in]	$e_h = 1.375$	[in]	
Gross area subject to shear	$A_{gv} = [(n_h - 1)^2]$	1) s _h + e _h] t _p x 2	= 5.531	[in ²]	
Net area subject to shear	$A_{nv} = A_{gv} - [($	n _h - 1)+ 0.5] d _h t	$x_p x2 = 3.891$	[in ²]	
Net area subject to tension					
when sheared out by 2 side strips	$A_{nt} = (e_v - 0)$.5 d _h) t _p x 2	= 0.703	[in ²]	
Block shear strength required	V _u =		= 50.00	[kips]	
Uniform tension stress factor	$U_{bs} = 1.00$				AISC 14 th Fig C-J4.2
Bolt shear resistance provided		6F _u A _{nv} , 0.6F _y A	= 197.44	[kips]	AISC 14 th Eq J4-5
Resistance factor-LRFD	$U_{bs}F_{u}A$ $\phi = 0.75$	` nt			AISC 14 th Eq J4-5
	$\phi R_n =$		= 148.08	[kips]	
	ratio = 0.34		> V _u	ОК	

End Plate - Bolt Bearing on Er	nd Plate		ratio = 50.00 / 107.35	= 0.47	PASS	
Single Bolt Shear Strength						
Bolt shear stress	bolt grade = A325-N		$F_{nv} = 54.0$	[ksi]	AISC 14 th	Table J3.2
	bolt dia $d_b = 0.750$	[in]	bolt area $A_b = 0.442$	[in ²]		
Single bolt shear strength	$R_{n-bolt} = F_{nv} A_b$		= 23.86	[kips]	AISC 14 th	Eq J3-1
Bolt Bearing/TearOut Strength	on Plate					
Bolt hole diameter	bolt dia $d_b = \frac{3}{4}$	[in]	bolt hole dia $d_h = \frac{13}{16}$	[in]	AISC 14 th	Table J3.3
Bolt spacing & edge distance	spacing $L_s = 3.000$	[in]	edge distance $L_e = 1.375$	[in]		
Plate tensile strength	$F_u = 65.0$	[ksi]				
Plate thickness	t = 0.375	[in]				
Interior Bolt						
Bolt hole edge clear distance	$L_c = L_s - d_h$		= 2.188	[in]		
Bolt tear out/bearing strength	$R_{n-t\&b-in} = 1.5 L_c t$	$F_u \le 3.0 d_b t F$	u		AISC 14 th	Eq J3-6b
	= 79.98 ≤	54.84	= 54.84	[kips]		
Bolt strength at interior	$R_{n-in} = min (R)$	n-t&b-in , R n-bolt	= 23.86	[kips]		
Edge Bolt						
Bolt hole edge clear distance	$L_c = L_e - d_h$	′ 2	= 0.969	[in]		
Bolt tear out/bearing strength	$R_{n-t\&b-ed} = 1.5 L_c t$	$F_u \le 3.0 d_b t F$	u		AISC 14 th	Eq J3-6b
	= 35.42 ≤	54.84	= 35.42	[kips]		
Bolt strength at edge	$R_{n-ed} = min (R)$	_{n-t&b-ed} , R _{n-bolt}) = 23.86	[kips]		
Number of bolt	interior n _{in} = 4		edge n _{ed} = 2			
Bolt bearing strength for all bolts	$R_n = n_{in} R_{n-in}$	$_{n} + n_{ed} R_{n-ed}$	= 143.14	[kips]		
Required shear strength	$V_u =$		= 50.00	[kips]		
Bolt resistance factor-LRFD	$\phi = 0.75$				AISC 14 th	J3-10
	$\phi R_n =$		= 107.35	[kips]		
	ratio = 0.47		$> V_u$	OK		

End Plate / Girder - Bolt Shea	r	ratio = 50.00 / 107.35	= 0.47	PASS
Bolt shear stress	grade = A325-N	$F_{nv} = 54.0$	[ksi]	AISC 14 th Table J3.2
	bolt dia $d_b = 0.750$ [in]	bolt area $A_b = 0.442$	[in ²]	
Number of bolt carried shear	$n_s = 6.0$	shear plane $m = 1$		
Bolt group eccentricity coefficient	C _{ec} =	= 1.000		
Required shear strength	V _u =	= 50.00	[kips]	
Bolt shear strength	$R_n = F_{nv} A_b n_s m C_{ec}$	= 143.14	[kips]	AISC 14 th Eq J3-1
Bolt resistance factor-LRFD	$\phi = 0.75$			AISC 14 th Eq J3-1
	$\phi R_n =$	= 107.35	[kips]	
	ratio = 0.47	> V _u	OK	

End Plate / Girder - Bolt Bearing	ng on Girder		ratio = 50.00 / 107.35	= 0.47	PASS	
Single Bolt Shear Strength						
Bolt shear stress	 bolt grade = A325-N		$F_{nv} = 54.0$	[ksi]	AISC 14 th	Table J3.2
	bolt dia $d_b = 0.750$	[in]	bolt area $A_b = 0.442$	[in ²]		
Single bolt shear strength	$R_{n-bolt} = F_{nv} A_b$		= 23.86	[kips]	AISC 14 th	Eq J3-1
Bolt Bearing/TearOut Strength of	n Plate					
Bolt hole diameter	bolt dia $d_b = \frac{3}{4}$	[in]	bolt hole dia $d_h = \frac{13}{16}$	[in]	AISC 14 th	Table J3.3
Bolt spacing	spacing $L_s = 3.000$	[in]				
Plate tensile strength	$F_u = 65.0$	[ksi]				
Plate thickness	t = 0.295	[in]				
Interior Bolt						
Bolt hole edge clear distance	$L_c = L_s - d_h$		= 2.188	[in]		
Bolt tear out/bearing strength	$R_{n-t\&b-in} = 1.5 L_c t$	F _u ≤ 3.0 d _b t m	$F_{\rm u}$		AISC 14 th	Eq J3-6b
	= 62.92 ≤	43.14	= 43.14	[kips]		
Bolt strength at interior	$R_{n-in} = min (R)$	_{n-t&b-in} , R _{n-bolt})	= 23.86	[kips]		
Number of bolt	interior n _{in} = 6					
Bolt bearing strength for all bolts	$R_n = n_{in} R_{n-in}$	ı	= 143.14	[kips]		
Required shear strength	$V_u =$		= 50.00	[kips]		
Bolt resistance factor-LRFD	$\phi = 0.75$				AISC 14 th	J3-10
	$\phi R_n =$		= 107.35	[kips]		
	ratio = 0.47		$> V_u$	OK		

Bolt Tensile Prying Action on E	nd Plate		ratio = 4.17 / 6.91	= 0.60	PASS
Bolt group forces	shear $V = 50.00$	[kips]	axial $P = -25.0$	0 [kips]	
Single Bolt Tensile Capacity With	out Considering Pry	ing			
Bolt grade	grade = A325-N	I			
Nominal tensile/shear stress	$F_{nt} = 90.0$	[ksi]	$F_{nv} = 54.0$	[ksi]	AISC 14 th Table J3.2
	bolt dia $d_b = 0.750$	[in]	bolt area $A_b = 0.442$	[in ²]	
Bolt group shear force	shear $V = 50.00$	[kips]	no of bolt $n = 6$		
Shear stress required	$f_{rv} = V / (n$	A _b)	= 18.86	[ksi]	
Resistance factor-LRFD	$\phi = 0.75$				AISC 14 th J3.7
Modified nominal tensile stress	$F'_{nt} = 1.3 F_{nt}$	$-\frac{F_{nt}}{\phi F_{nv}} f_{rv}$	≤ F _{nt} = 75.08	B [ksi]	AISC 14 th Eq J3-3a
Bolt norminal tensile strength	$r_n = F'_{nt} A_b$		= 33.17	[kips]	AISC 14 th Eq J3-1
Resistance factor-LRFD	$\phi = 0.75$				AISC 14 th J3.6
Single bolt tensile capacity	$\phi r_n =$		= 24.88	3 [kips]	
Single Bolt Tensile Capacity After	Considering Prying				
End plate	width $w = 6.750$	[in]	bolt gage $g = 4.000$	[in]	
	web $t_{w} = 0.260$	[in]			
Dist from bolt center to plate edge	a = 0.5 (w	- g)	= 1.375	[in]	
	•		$b + 0.5 d_b$ = 1.750		AISC 14 th Eq 9-27
Polt hole diameter	<u> </u>	-	-	[in]	AISC 14 th B4.3b
Bolt hole diameter Dist from bolt center to face of web	bolt dia $d_b = 0.750$ b = 0.5(g -		bolt hole dia $d_h = 0.813$		AISC 14 ** B4.30
Dist from Doit center to race of web	b' = 0.3(g - 1) b' = b - 0.5	•••	= 1.870 = 1.495		AISC 14 th Eq 9-21
		u _b	- 1.493	[]	A13C 14 Lq 3 Z1
Bolt pitch spacing	$s_v = 3.000$				
Bolt tributary length	p = s _v p	≤ 2b and p	$\leq s_v = 2.917$	' [in]	AISC 14 th Page 9-11
	$\rho = b' / a'$		= 0.854		AISC 14 th Eq 9-26
	$\delta = 1 - d_h/$	р	= 0.721		AISC 14 th Eq 9-24
Tensile capacity per bolt before considering prying	B = from ca	ılc shown in	above section = 24.88	[kips]	
Resistance factor-LRFD	$\phi = 0.90$				AISC 14 th Page 9-10
End plate thickness	t = 0.375	[in]	tensile $F_u = 65.0$	[ksi]	
Plate thickness req'd to develop bolt tensile capacity without prying	$t_c = \left(\frac{4 B I}{\phi p F}\right)$) ^{0.5}	= 0.934	[in]	AISC 14 th Eq 9-30a
	$\alpha' = \frac{1}{\delta (1 + 1)^{-1}}$	-	$)^2 - 1]$ = 3.887	•	AISC 14 th Eq 9-35
when $\alpha' > 1$	$Q = \left(\frac{t}{t_c}\right)^2$	$^{2}(1+\delta)$	= 0.278	;	AISC 14 th Eq 9-34
Bolt tensile force per bolt in demand	T = from ca	ılc shown be	elow = 4.17	[kips]	
Tensile strength per bolt after considering prying	$\phi r_n = B \times Q$		= 6.91	[kips]	AISC 14 th Eq 9-31
considering prying	ratio = 0.60		> T	OK	
Calculate Max Single Bolt Tensile	 Load				
Bolt group force	axial P = 25.00	[kips]			
Bolt number	Bolt Row n _h = 2		Bolt Col n _v = 3		
Bolt tensile force per bolt	T = P / (n、	, n _h)	= 4.17	[kips]	

Beam Web to End Plate Weld S	Strength	ratio = 6.88 / 7.61	= 0.90	PASS
Weld Group Forces				
	shear V = 50.00 [kips]	axial $P = -25.00$	[kips] i	n tension
Beam web-end plate weld length	L =	= 8.750	[in]	
Beam web-end plate fillet weld size	w =	= 0.313	[in]	
Beam web-end plate weld length used for design	L _w = L - 2 w	= 8.125	[in]	
Combined Weld Stress				
Weld stress from axial force	$f_a = P / L$	= -3.077	[kip/in]	in tension
Weld stress from shear force	$f_v = V / L$	= 6.154	[kip/in]	
Weld stress combined - max	$f_{max} = (f_a^2 + f_v^2)^{0.5}$	= 6.880	[kip/in]	AISC 14 th Eq 8-11
Weld stress load angle	$\theta = \tan^{-1}\left(\frac{f_a}{f_v}\right)$	= 26.6	[°]	
Fillet Weld Strength Calc				
Fillet weld leg size	$w = \frac{5}{16}$ [in]	load angle $\theta = 26.6$	[°]	
Electrode strength	$F_{EXX} = 70.0$ [ksi]	strength coeff $C_1 = 1.00$		AISC 14 th Table 8-3
Number of weld line	n = 2 for double fillet			
Load angle coefficient	$C_2 = (1 + 0.5 \sin^{1.5} \theta)$	= 1.15		AISC 14 th Page 8-9
Fillet weld shear strength	$R_{n-w} = 0.6 (C_1 \times 70 \text{ ksi}) 0.70$	$07 \text{ w n C}_2 = 21.334$	[kip/in]	AISC 14 th Eq 8-1
Base metal - beam web	thickness t = 0.260 [in]	tensile F _u = 65.0	[ksi]	
Base metal - beam web is in shear, s	<u>shear</u> rupture as per AISC 14 th Eq J ²	1-4 is checked		AISC 14 th J2.4
Base metal shear rupture	$R_{n-b} = 0.6 F_u t$	= 10.140	[kip/in]	AISC 14 th Eq J4-4
Double fillet linear shear strength	$R_n = \min (R_{n-w}, R_{n-b})$	= 10.140	[kip/in]	AISC 14 th Eq 9-2
Resistance factor-LRFD	φ = 0.75			AISC 14 th Eq 8-1
	$\phi R_n =$	= 7.605	[kip/in]	
	ratio = 0.90	> f _{max}	OK	